Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 121: 104493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637066

RESUMO

Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs). Notably, nanopore long-read sequencing provides more accurate bacterial taxonomic classification in comparison to short-read sequencing. Here, we revealed the impact of food types and attributes (origin, retail place, and food processing methods) on microbial communities and the AMR profile using nanopore metagenomic sequencing. We analyzed a total of 260 food products, including raw meat, sashimi, and ready-to-eat (RTE) vegetables. Clostridium botulinum, Acinetobacter baumannii, and Vibrio parahaemolyticus were identified as the top three foodborne pathogens in raw meat and sashimi. Importantly, even with low pathogen abundance, higher percentages of samples containing carbapenem and cephalosporin resistance genes were identified in chicken and RTE vegetables, respectively. In parallel, our results demonstrated that fresh, peeled, and minced foods exhibited higher levels of pathogenic bacteria. In conclusion, this comprehensive study offers invaluable data that can contribute to food safety assessments and serve as a basis for quality indicators.


Assuntos
Anti-Infecciosos , Sequenciamento por Nanoporos , Microbiologia de Alimentos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias/genética , Metagenômica
2.
Microbiol Spectr ; 12(4): e0213323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466098

RESUMO

The incidence of isoniazid (INH) resistant Mycobacterium tuberculosis is increasing globally. This study aimed to identify the molecular mechanisms behind the development of INH resistance in M. tuberculosis strains collected from the same patients during the standard course of treatment. Three M. tuberculosis strains were collected from a patient before and during antituberculosis (anti-TB) therapy. The strains were characterized using phenotypic drug susceptibility tests, Mycobacterial Interspersed Repeated Unit-Variable-Number Tandem Repeats (MIRU-VNTR), and whole-genome sequencing (WGS) to identify mutations associated with INH resistance. To validate the role of the novel mutations in INH resistance, the mutated katG genes were electroporated into a KatG-deleted M. tuberculosis strain (GA03). Three-dimensional structures of mutated KatG were modeled to predict their impact on INH binding. The pre-treatment strain was susceptible to INH. However, two INH-resistant strains were isolated from the patient after anti-TB therapy. MIRU-VNTR and WGS revealed that the three strains were clonally identical. A missense mutation (P232L) and a nonsense mutation (Q461Stop) were identified in the katG of the two post-treatment strains, respectively. Transformation experiments showed that katG of the pre-treatment strain restored INH susceptibility in GA03, whereas the mutated katG genes from the post-treatment strains rendered negative catalase activity and INH resistance. The protein model indicated that P232L reduced INH-KatG binding affinity while Q461Stop truncated gene transcription. Our results showed that the two katG mutations, P232L and Q461Stop, accounted for the co-emergence of INH-resistant clones during anti-TB therapy. The inclusion of these mutations in the design of molecular assays could increase the diagnostic performance.IMPORTANCEThe evolution of drug-resistant strains of Mycobacterium tuberculosis within the lung lesions of a patient has a detrimental impact on treatment outcomes. This is particularly concerning for isoniazid (INH), which is the most potent first-line antimycobacterial drug. However, the precise genetic factors responsible for drug resistance in patients have not been fully elucidated, with approximately 15% of INH-resistant strains harboring unknown genetic factors. This raises concerns about the emergence of drug-resistant clones within patients, further contributing to the global epidemic of resistance. In this study, we revealed the presence of two novel katG mutations, which emerged independently due to the stress exerted by antituberculosis (anti-TB) treatment on a parental strain. Importantly, we experimentally demonstrated the functional significance of both mutations in conferring resistance to INH. Overall, this research sheds light on the genetic mechanisms underlying the evolution of INH resistance within patients and provides valuable insights for improving diagnostic performance by targeting specific mutations.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Catalase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Mutação , Testes de Sensibilidade Microbiana
3.
Clin Chem ; 69(10): 1174-1185, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537871

RESUMO

BACKGROUND: HIV infections often develop drug resistance mutations (DRMs), which can increase the risk of virological failure. However, it has been difficult to determine if minor mutations occur in the same genome or in different virions using Sanger sequencing and short-read sequencing methods. Oxford Nanopore Technologies (ONT) sequencing may improve antiretroviral resistance profiling by allowing for long-read clustering. METHODS: A new ONT sequencing-based method for profiling DRMs in HIV quasispecies was developed and validated. The method used hierarchical clustering of long amplicons that cover regions associated with different types of antiretroviral drugs. A gradient series of an HIV plasmid and 2 plasma samples was prepared to validate the clustering performance. The ONT results were compared to those obtained with Sanger sequencing and Illumina sequencing in 77 HIV-positive plasma samples to evaluate the diagnostic performance. RESULTS: In the validation study, the abundance of detected quasispecies was concordant with the predicted result with the R2 of > 0.99. During the diagnostic evaluation, 59/77 samples were successfully sequenced for DRMs. Among 18 failed samples, 17 were below the limit of detection of 303.9 copies/µL. Based on the receiver operating characteristic analysis, the ONT workflow achieved an F1 score of 0.96 with a cutoff of 0.4 variant allele frequency. Four cases were found to have quasispecies with DRMs, in which 2 harbored quasispecies with more than one class of DRMs. Treatment modifications were recommended for these cases. CONCLUSIONS: Long-read sequencing coupled with hierarchical clustering could differentiate the quasispecies resistance profiles in HIV-infected samples, providing a clearer picture for medical care.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Quase-Espécies/genética , HIV-1/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise por Conglomerados
4.
Front Microbiol ; 14: 1164632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125165

RESUMO

Introduction: Microbes in the built environment have been implicated as a source of infectious diseases. Bacterial culture is the standard method for assessing the risk of exposure to pathogens in urban environments, but this method only accounts for <1% of the diversity of bacteria. Recently, full-length 16S rRNA gene analysis using nanopore sequencing has been applied for microbial evaluations, resulting in a rise in the development of long-read taxonomic tools for species-level classification. Regarding their comparative performance, there is, however, a lack of information. Methods: Here, we aim to analyze the concordance of the microbial community in the urban environment inferred by multiple taxonomic classifiers, including ARGpore2, Emu, Kraken2/Bracken and NanoCLUST, using our 16S-nanopore dataset generated by MegaBLAST, as well as assess their abilities to identify culturable species based on the conventional culture results. Results: According to our results, NanoCLUST was preferred for 16S microbial profiling because it had a high concordance of dominant species and a similar microbial profile to MegaBLAST, whereas Kraken2/Bracken, which had similar clustering results as NanoCLUST, was also desirable. Second, for culturable species identification, Emu with the highest accuracy (81.2%) and F1 score (29%) for the detection of culturable species was suggested. Discussion: In addition to generating datasets in complex communities for future benchmarking studies, our comprehensive evaluation of the taxonomic classifiers offers recommendations for ongoing microbial community research, particularly for complex communities using nanopore 16S rRNA sequencing.

5.
Emerg Microbes Infect ; 12(1): 2204155, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37070526

RESUMO

Between January 2015 and October 2022, 38 patients with culture-confirmed melioidosis were identified in the Kowloon West (KW) Region, Hong Kong. Notably, 30 of them were clustered in the Sham Shui Po (SSP) district, which covers an estimated area of 2.5 km2. Between August and October 2022, 18 patients were identified in this district after heavy rainfall and typhoons. The sudden upsurge in cases prompted an environmental investigation, which involved collecting 20 air samples and 72 soil samples from residential areas near the patients. A viable isolate of Burkholderia pseudomallei was obtained from an air sample collected at a building site five days after a typhoon. B. pseudomallei DNA was also detected in 21 soil samples collected from the building site and adjacent gardening areas using full-length 16S rRNA gene sequencing, suggesting that B. psuedomallei is widely distributed in the soil environment surrounding the district. Core genome-multilocus sequence typing showed that the air sample isolate was phylogenetically clustered with the outbreak isolates in KW Region. Multispectral satellite imagery revealed a continuous reduction in vegetation region in SSP district by 162,255 m2 from 2016 to 2022, supporting the hypothesis of inhalation of aerosols from the contaminated soil as the transmission route of melioidosis during extreme weather events. This is because the bacteria in unvegetated soil are more easily spread by winds. In consistent with inhalational melioidosis, 24 (63.2%) patients had pneumonia. Clinicians should be aware of melioidosis during typhoon season and initiate appropriate investigation and treatment for patients with compatible symptoms.


Assuntos
Burkholderia pseudomallei , Tempestades Ciclônicas , Melioidose , Humanos , Melioidose/diagnóstico , Hong Kong , Estações do Ano , RNA Ribossômico 16S , Aerossóis e Gotículas Respiratórios , Surtos de Doenças , China
6.
Virulence ; 13(1): 1088-1100, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35791449

RESUMO

Clinical manifestations of tuberculosis range from asymptomatic infection to a life-threatening disease such as tuberculous meningitis (TBM). Recent studies showed that the spectrum of disease severity could be related to genetic diversity among clinical strains of Mycobacterium tuberculosis (Mtb). Certain strains are reported to preferentially invade the central nervous system, thus earning the label "hypervirulent strains".However, specific genetic mutations that accounted for enhanced mycobacterial virulence are still unknown. We previously identified a set of 17 mutations in a hypervirulent Mtb strain that was from TBM patient and exhibited significantly better intracellular survivability. These mutations were also commonly shared by a cluster of globally circulating hyper-virulent strains. Here, we aimed to validate the impact of these hypervirulent-specific mutations on the dysregulation of gene networks associated with virulence in Mtb via multi-omic analysis. We surveyed transcriptomic and proteomic differences between the hyper-virulent and low-virulent strains using RNA-sequencing and label-free quantitative LC-MS/MS approach, respectively. We identified 25 genes consistently differentially expressed between the strains at both transcript and protein level, regardless the strains were growing in a nutrient-rich or a physiologically relevant multi-stress condition (acidic pH, limited nutrients, nitrosative stress, and hypoxia). Based on integrated genomic-transcriptomic and proteomic comparisons, the hypervirulent-specific mutations in FadE5 (g. 295,746 C >T), Rv0178 (p. asp150glu), higB (p. asp30glu), and pip (IS6110-insertion) were linked to deregulated expression of the respective genes and their functionally downstream regulons. The result validated the connections between mutations, gene expression, and mycobacterial pathogenicity, and identified new possible virulence-associated pathways in Mtb.


Assuntos
Mycobacterium tuberculosis , Cromatografia Líquida , Humanos , Proteômica , Espectrometria de Massas em Tandem , Virulência/genética
7.
Diagn Microbiol Infect Dis ; 103(4): 115726, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691105

RESUMO

This study used digital polymerase chain reaction (dPCR) to determine whether envelope (E) gene-negative and nucleocapsid (N2) gene-positive (E-N+) results obtained with the Cepheid Xpert Xpress SARS-CoV-2 assay are reliable. Using droplet digital PCR results as a reference, 18 of 22 E-N+ samples with a low viral load (81.8%) were identified as true positives.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Humanos , Nasofaringe , Nucleocapsídeo/genética , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Sensibilidade e Especificidade
8.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35234870

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Surtos de Doenças , Feminino , Hong Kong/epidemiologia , Humanos , Mamíferos , RNA Viral/genética , SARS-CoV-2/genética
9.
Emerg Microbes Infect ; 11(1): 689-698, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35135441

RESUMO

During the investigation of a pet shop outbreak of severe acute respiratory coronavirus 2 (SARS-CoV-2) with probable hamster-to-human transmission, the environmental and hamster samples in epidemiologically linked pet shops were found positive for SARS-CoV-2 Delta variant AY.127 strains which are phylogenetically closely related to patients and reported European strains. This interspecies' spill-over has triggered transmission in 58 patients epidemiologically linked to three pet shops. Incidentally, three dwarf hamsters imported from the Netherlands and centralized in a warehouse distributing animals to pet shops were positive for SARS-CoV-2 spike variant phylogenetically related to European B.1.258 strains from March 2020. This B.1.258 strain almost disappeared in July 2021. While no hamster-to-human transmission of B.1.258-like strain was found in this outbreak, molecular docking showed that its spike receptor-binding domain (RBD) has a similar binding energy to human ACE2 compared to that of Delta variant AY.127. Therefore, the potential of this B.1.258-related spike variant for interspecies jumping cannot be ignored. The co-circulation of B.1.258-related spike variants with Delta AY.127, which originated in Europe and was not previously found in Hong Kong, suggested that hamsters in our wholesale warehouse and retail pet shops more likely have acquired these viruses in the Netherlands or stopovers during delivery by aviation than locally. The risk of human-to-hamster reverse zoonosis by multiple SARS-CoV-2 variants leading to further adaptive spike mutations with subsequent transmission back to humans cannot be underestimated as an outbreak source of COVID-19. Testing imported pet animals susceptible to SARS-CoV-2 is warranted to prevent future outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Hong Kong , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
10.
J Clin Microbiol ; 60(1): e0176921, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34788113

RESUMO

Bacterial pathogens that cannot be identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) are occasionally encountered in clinical laboratories. The 16S rRNA gene is often used for sequence-based analysis to identify these bacterial species. Nevertheless, traditional Sanger sequencing is laborious, time-consuming, and low throughput. Here, we compared two commercially available 16S rRNA gene sequencing tests that are based on Illumina and Nanopore sequencing technologies, respectively, in their ability to identify the species of 172 clinical isolates that failed to be identified by MALDI-TOF MS. Sequencing data were analyzed by the respective built-in programs (MiSeq Reporter software of Illumina and Epi2me of Nanopore) and BLAST+ (v2.11.0). Their agreement with Sanger sequencing on species-level identification was determined. Discrepancies were resolved by whole-genome sequencing. The diagnostic accuracy of each workflow was determined using the composite sequencing result as the reference standard. Despite the high base-calling accuracy of Illumina sequencing, we demonstrated that the Nanopore workflow had a higher taxonomic resolution at the species level. Using built-in analysis algorithms, the concordance of Sanger 16S with the Illumina and Nanopore workflows was 33.14% and 87.79%, respectively. The agreement was 65.70% and 83.14%, respectively, when BLAST+ was used for analysis. Compared with the reference standard, the diagnostic accuracy of Nanopore 16S was 96.36%, which was identical to that of Sanger 16S and better than that of Illumina 16S (69.07%). The turnaround time of the Illumina workflow and the Nanopore workflow was 78 h and 8.25 h, respectively. The per-sample cost of the Illumina and Nanopore workflows was US$28.5 and US$17.7, respectively.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Genes de RNAr , Humanos , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fluxo de Trabalho
11.
J Virol Methods ; 299: 114333, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656702

RESUMO

The increasing prevalence of N501Y variants of SARS-CoV-2 has kindled global concern due to their enhanced transmissibility. Genome sequencing is the gold standard method to identify the emerging variants of concern. But it is time-consuming and expensive, limiting the widespread deployment of genome surveillance in some countries. Health authorities surge the development of alternative assay to expand screening capacity with reduced time and cost. In this study, we developed an in-house TaqMan minor groove binder (MGB) probe-based one-step RT-qPCR assay to detect the presence of N501Y mutation in SARS-CoV-2. A total of 168 SARS-CoV-2 positive respiratory specimens were collected to determine diagnostic accuracy of the RT-qPCR assay. As a reference standard, PANGO lineages and the mutation patterns of all samples were characterised by whole-genome sequencing. The analytical sensitivity and the ability of the assay to detect low frequency of N501Y variants were also evaluated. A total of 31 PANGO lineages were identified from 168 SARS-CoV-2 positive cases, in which 34 samples belonged to N501Y variants, including B.1.1.7 (n = 20), B.1.351 (n = 12) and P.3 (n = 2). The N501Y RT-qPCR correctly identified all 34 samples as N501Y-positive and the other 134 samples as wildtype. The limit-of-detection of the assay consistently achieved 1.5 copies/µL on four different qPCR platforms. N501Y mutation was successfully detected at an allele frequency as low as 10 % in a sample with mixed SARS-CoV-2 lineage. The N501Y RT-qPCR is simple and inexpensive (US$1.6 per sample). It enables robust high-throughput screening for surveillance of SARS-CoV-2 variants of concern harbouring N501Y mutation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento Completo do Genoma
12.
Lancet Reg Health West Pac ; 17: 100281, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611629

RESUMO

BACKGROUND: Global dissemination of SARS-CoV-2 Variants of Concern (VOCs) remains a concern. The aim of this study is to describe how mass testing and phylogenetic analysis successfully prevented local transmission of SARS-CoV-2 VOC in a densely populated city with low herd immunity for COVID-19. METHODS: In this descriptive study, we conducted contact tracing, quarantine, and mass testing of the potentially exposed contacts with the index case. Epidemiological investigation and phylogeographic analysis were performed. FINDINGS: Among 11,818 laboratory confirmed cases of COVID-19 diagnosed till 13th May 2021 in Hong Kong, SARS-CoV-2 VOCs were found in 271 (2.3%) cases. Except for 10 locally acquired secondary cases, all SARS-CoV-2 VOCs were imported or acquired in quarantine hotels. The index case of this SARS-CoV-2 VOC B.1.351 epidemic, an inbound traveler with asymptomatic infection, was diagnosed 9 days after completing 21 days of quarantine. Contact tracing of 163 contacts in household, hotel, and residential building only revealed 1 (0.6%) secondary case. A symptomatic foreign domestic helper (FDH) without apparent epidemiological link but infected by virus with identical genome sequence was subsequently confirmed. Mass testing of 0.34 million FDHs identified two more cases which were phylogenetically linked. A total of 10 secondary cases were identified that were related to two household gatherings. The clinical attack rate of household close contact was significantly higher than non-household exposure during quarantine (7/25, 28% vs 0/2051, 0%; p<0.001). INTERPRETATION: The rising epidemic of SARS-CoV-2 VOC transmission could be successfully controlled by contact tracing, quarantine, and rapid genome sequencing complemented by mass testing. FUNDING: Health and Medical Research Fund Commissioned Research on Control of Infectious Disease (see acknowledgments for full list).

13.
Commun Biol ; 4(1): 1102, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545191

RESUMO

Emerging variants of SARS-CoV-2 have been shown to rapidly replace original circulating strains in humans soon after they emerged. There is a lack of experimental evidence to explain how these natural occurring variants spread more efficiently than existing strains of SARS-CoV-2 in transmission. We found that the Alpha variant (B.1.1.7) increased competitive fitness over earlier parental D614G lineages in in-vitro and in-vivo systems. Using hamster transmission model, we further demonstrated that the Alpha variant is able to replicate and shed more efficiently in the nasal cavity of hamsters than other variants with low dose and short duration of exposure. The capability to initiate effective infection with low inocula may be one of the key factors leading to the rapid transmission of emerging variants of SARS-CoV-2.


Assuntos
COVID-19/genética , SARS-CoV-2/genética , Replicação Viral/genética , Animais , COVID-19/patologia , COVID-19/transmissão , Linhagem Celular/virologia , Cricetinae , Modelos Animais de Doenças , Humanos , SARS-CoV-2/patogenicidade
14.
Clin Infect Dis ; 73(6): e1356-e1364, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33851214

RESUMO

BACKGROUND: Nosocomial outbreaks with superspreading of coronavirus disease 2019 due to a possible airborne transmission have not been reported. METHODS: Epidemiological analysis, environmental samplings, and whole-genome sequencing (WGS) were performed for a hospital outbreak. RESULTS: A superspreading event that involved 12 patients and 9 healthcare workers (HCWs) occurred within 9 days in 3 of 6 cubicles at an old-fashioned general ward with no air exhaust built within the cubicles. The environmental contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was significantly higher in air grilles (>2 m from patients' heads and not within reach) than on high-touch clinical surfaces (36.4%, 8 of 22 vs 3.4%, 1 of 29, P = .003). Six (66.7%) of 9 contaminated air exhaust grilles were located outside patient cubicles. The clinical attack rate of patients was significantly higher than of HCWs (15.4%, 12 of 78 exposed patients vs 4.6%, 9 of 195 exposed HCWs, P = .005). Moreover, the clinical attack rate of ward-based HCWs was significantly higher than of nonward-based HCWs (8.1%, 7 of 68 vs 1.8%, 2 of 109, P = .045). The episodes (mean ±â€…standard deviation) of patient-care duty assignment in the cubicles was significantly higher among infected ward-based HCWs than among noninfected ward-based HCWs (6.0 ±â€…2.4 vs 3.0 ±â€…2.9, P = .012) during the outbreak period. The outbreak strains belong to SARS-CoV-2 lineage B.1.36.27 (GISAID clade GH) with the unique S-T470N mutation on WGS. CONCLUSIONS: This nosocomial point source superspreading event due to possible airborne transmission demonstrates the need for stringent SARS-CoV-2 screening at admission to healthcare facilities and better architectural design of ventilation systems to prevent such outbreaks. Portable high-efficiency particulate filters were installed in each cubicle to improve ventilation before resumption of clinical service.


Assuntos
COVID-19 , Infecção Hospitalar , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Pessoal de Saúde , Hospitais , Humanos , SARS-CoV-2
15.
Emerg Infect Dis ; 27(1): 196-204, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350913

RESUMO

Initial cases of coronavirus disease in Hong Kong were imported from mainland China. A dramatic increase in case numbers was seen in February 2020. Most case-patients had no recent travel history, suggesting the presence of transmission chains in the local community. We collected demographic, clinical, and epidemiologic data from 50 patients, who accounted for 53.8% of total reported case-patients as of February 28, 2020. We performed whole-genome sequencing to determine phylogenetic relationship and transmission dynamics of severe acute respiratory syndrome coronavirus 2 infections. By using phylogenetic analysis, we attributed the community outbreak to 2 lineages; 1 harbored a common mutation, Orf3a-G251V, and accounted for 88.0% of the cases in our study. The estimated time to the most recent common ancestor of local coronavirus disease outbreak was December 24, 2019, with an evolutionary rate of 3.04 × 10-3 substitutions/site/year. The reproduction number was 1.84, indicating ongoing community spread.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Surtos de Doenças , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/transmissão , Análise por Conglomerados , Hotspot de Doença , Evolução Molecular , Feminino , Hong Kong/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Filogenia , Filogeografia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Proteínas Viroporinas/genética , Sequenciamento Completo do Genoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...